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Characteristic Properties
of the Segmented Rational Mimmax Approximation Problem

C. L. Lawson :

0. Introduction

A rational mimmax approximstor for a contizuous real valued function
on a closed bounded real interval exhibits a characteristic balancing of
the sxtremes of the error curve (Ref. i, p. 55). This property has been
exploited in some of the methods which have been devised for the numsrical
solution of the rational mirmmax approximatiocn preobilem {Ref. 2, 3, 5). Sueh
methods strive iteratively to improve the balance of the extremes of the
erTor curve,

In this paper, we show that there 1s aziso a property of balanced
naxizum errors associated with the segmented rstional mimmax problem. IE
is a sufficient but not a necessary condition for a zolution. The segmented
problen nsed not have a unioue solution, but it aiwsye has some solution
which has the balanced error property.

Numerical soiution methods for the segrentsd minmax problem can be
based upon this vroperty. in a meparate paper {(Hef. 4), we describe such

a method and glve some numerical exazmples.




Section 1 is devoted to three independent lemmas which identify the
propertieé of rational minmax epproximstion and segmentation upon which the
remainder of the development resis. In Sectlon 2, the segmented rational
minmax epproximation problem is stated, and the existence of a solution is
deduced.

In Section 3, the existence of a solution having the balanced error
property is established. In Section 4, some inequaiities similar to those
known in the linear least maximum problem are established, and the balanced
error property 1s shown to be a sufficient condition for & solution.

In Sgction 5s it is shown that, for any initial position of the break-
points defining the segmentation, there is a continuous transformation of
the breakpoints which permits the meximm error to descend to its minimm
value. Section 6 provides scme examples illustrating the lack of convexity

in this problem.

l. Three basic lemmas.

Iet £ be a continuous real valued fumction on the nondegenerate ciosed
bounded real interval [e,p]s Let n and d be non-negative integers. let G
be the class of rational hmcfions whose numerators snd denciminators are
polynomials of degrees not exceeding n and d respectively. For real numbers

v and w satisfying o < v < v < B,define the minmax error function h by

h{v,w) = min max 12{x) - g(x)
B - vsx<w
Lemua 1. The function h is continuous on the campact reglon of vw-space
defined by a < v< w< 8.
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Procof. let v o and w satisfy o < VS WS B. Suppose h is not continuous

at (vo, wo)o Then there axists an ¢ > 0 and sequences {vi} and {wi} with

= s 6 o 2 b - == = :
o< vis wis R, 1 =1, 2, s such that .dd_&mi Vg = Voo J_.imi Wy =W, and
(1) |h (vi, wi) = h (v@, w@)l >eforalli=3, 2 ° e o

Let g; denote a member of G which is the mirnmax approximator for f
on ',’vi, wi], 1=0, 1, ° ° °, normalized so that the coefficient of largest
magnitude in g is 1. An axistence theorem for these mirmax approximators
is given in (Ref. 1, p. 53).

By definition |f (x) - &, (x)l is bounded by h (vo, wo) for xe fvo, WOL
Consequently the continuity of £ and 8, pernits us to choose a & > 0 such
that 'f (x) - go(x)l <h (vo, wo) + ¢ for x in the closed interval I between
mex {vo - 8, a}and min {wo( + 8, ﬂ}? -Witheut loss of geﬁm‘ality, we wi).‘l
assume the points Vi and wi, 71 = 3, 2, ¢ ° ¢, Jle in the closed interval Iok

The dafinitiohs of h and 8 assure th__at. |

h (v., w,) € max if (x)»gﬂ(x), ch (v, w) +e
Y v sxew v o 0
Along with inequality (1) this implies

(2) n (vi, wi) <h (vo,_wg)vs e . 1=1, 2,° ¢ o

If v, =W, jthen h (vo, w@} = 0,4in which case (2) is impossible and
Tema 1 is established. We proceed to complete the proof for the case
vb < woo . '

The normalization of the rational forms 8ys Bp° ° o, assures that
thers is a subsequence of { gi} whose corresponding coefficients form

convorgent sequences. Without loss of generality we will assume the

b <3 .
sequence ’g has this property. Ist g denote the rational form whose
i A
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coefficients are respectively the limits of the sequences of eorresponding
coefficients in the sequence {gil The normalization assures that the co-
efficient of largest magnitude in g* is 1. |

- Let X' be any point satisfying Yo < x' < W e Then for all sufficlently
large 1 the point x° ‘also satisfies vy < x*< Vis whence
(3) If (x*) - 8y (x*) [g h (vi, vi) <h (vo, wo) - ¢ for sufficiently lerge
i. It follows that, unless X' is & zero of its denaminator, g* satisfies
| =) - 6" (&) [ v, ) - ¢ |

Since x' was chosen erbitrarily in (v o wo) this relation holds for
all x in (v_, W ) except zeros of the denominator of g . |

Any point x in (vo, wo) vhich 1§ en isolated zero of the denominator
of g* must also be a zero of the numerator of g* with at least a8 great
maltiplieity, for otherwise imlity (3) would be violated in & neighbor-
hood of x for sufficiently large . Furthermore the dencminator of g is
not identieally zero, for then inequality (3) vould require that the same
be true of the mumerator of _-g_'* contradicting the statement that one of the
coefﬂ#lenta of g* is 1. It follows that if g' isj-the_ mtiona;l form ob~
tained from g* by removing all polynomdel factors camson to the mumerator
end denordnator of g then g' satisfies

|2 (x) - g* (x)i<h {vo-,. "’o) -~ ¢ for all X ¢ (vo, )

Under these circtmst#nces g?! cennot have a pole at v, OF W, and thus
this bound for | (x) - g' (x)| s uniform throughout the closed interval
[vo, wo']o

This implies that g° is & better approximator for £ on [-vo, v.] than
the best approximator, g o2 Whose maximum error is h (vo, wo). This con-
tradiction followed from the assumption that h was not continuous at
(vo, wo). Consequently h must be continucus at (vc, wo). This completes

the proof of Iemma 1.
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Lemms 2. The mipmax error function h as defined preceding Iemms 1 is non-

increaging in its fj.rst varlable and nou-decreasing in its second varigble.

Proof. Iet vl < v, g v, < Wl. Iet g, be the least maximum approximator in

¢ for £ on [vl, l] _
Then
h {v), v} = max |2 {x) - gl(x)|3 max |e(x) - g, {x3)
v, <x< vy V<KLV
> min max j£(x) - g{x)| = h'(vo,wo)

vV <x<w
BeG vV < XS W,

Lemma 3. Iet m be an integer exceeding 1 and let u, and v, be numbers satisfying

= < <.ooc<u <u§
OE U I DS Y Y, 2B

gnd

i}

[v4
< <°°.<
vo._,vl.- v-l_ EgB

Thep,unless u, = v, for all i, there exist indices J and k such that the following

propey inclusions nold:

[u,}"l, u‘j-} &= Ev:}‘"l’ v,j]

(s M & T ys 9]
Proof. Suppcse u, # v, for some i. Let 8 be the first index for vhich
inequality holds and without loss of gencrality assume v, < Voo Then the lemma
is established by letting j = s and letting k be the first index greater than

S for which v. > V. .
j for which v, 2z v

2. The segmented rstional minmex approximstlon problem.

Let £ be a coatinuous fumetion on [&¢, 8] as in Section 1. Let an integer

~

< specify the number of coutigucus subintervals into which [,,B] is to be

m>
partitioned by the selsctiomm of m-1 breakpoinis Li 1= 1 o005 m=1, satisfyiag

lﬁl’\rl = < < <oon< <'U. &
3 d=u < ow < Su o Sy g

let n i am: dl’ 1=1;, vooy @, be nun%wg%vm inte g v8 and let Gq denote
Blees ol ~® s hlereld Mty 9 e 2o e SRR

..
codred -t

Cenvbgmars mnwiy B , —e T
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polynamials of degrees not exceeding n, and d:l"

For 1 =1, .c., m, and for LAY end u, satisfying o < u 4 < u, < B, define

th

the minmex error function for the i subinterval by

by (v, ;o) = min max - |£(x)-g, (x|
gieGi Uy < X sui
By Lemmm 1 each of these functions b, is continuous on 1ts domain of
defirition.

Let U denote the subset of (m +1) - space consisting of those vectors
u= (uo’ Upyeos ,um) vwhose components satisfy (4). On the set U _deﬁ.né the
maxminmax function ¥ by

A {u) = max {hi (ui-l’ ui) ti1-1, couy, m}
Our problem is to min:lmize,a over U.
The continuity of the functions hi implies the continuity of # . The

existence of a solution vectop u% is then an immediate consequence of the fact

that U is compact.

For our later use we introduce the following definitbus:

Tamn {#{u):ueUl

U* = fusg (n) =1}

¥y (u} = min {n, (ui_l,ui) :i=1,..0,m}
A vector u will be called balanced if hi(ui~l5ui} = & (u), i = 1,...,m.
Note that T can be called the mimmexmirmax error for the problem. Tt will be

shown thet T = max {y (u): u ¢ Uland thus T'also deserves the title of maxmirmninmax

exrror.

3. Existence of a balanced solution wechor.

At this point 1t will be useful to introduce a closely related dynamic
programming problem.

Define: ‘
el(ﬂl) = hl (cé': u1)
and
{5) ei{z;.i)} = min Cmax feg g (my ), Belag 5, w1 =2, aeo,

<5y P

R
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To relate this to the problem formulated in Section 2 note that ei(ui)
is the mirmaxminmax error for the i-segment problem on the interval [a,ui].
In particular e (B) = r. Equation (5) represents the fact that an i-segment
mimmaxminmax approximator on [a,ui] may be found by searching on the siixgle
variable u, ; for the most favorable comhination of an (i-l)-segment minmax-
minmax approximator on [o,

(o591

Theorem 1. Statements A, C, and D are valid for 1 < 1 < m and statement B for

ui—l] and a one-segment minmax approximator on

2<i<m.
A. e (@) =0
B. Given v, ¢ [a,B], there exdsts v, ; ela,v;]
guch that e, (v,) = & 1 (vy_5) =By (vq_557y)
. is non-decreasing on [a,B]

e; is continuous on [«,8]

<

e

An immediate consequence of statement B in the above theorem is the
following theorem which, for the case i = m, asserts the exlstence of a

balanced golution vector.

Theorem 2. Given v, e[e,B8], there exist V4o J=1, ooy i =1, such that
¢=v <V S ...V and e, (vi) =hj (vj_l,vj), J=1, ...y 1.

Proof of T.eoren l.

Statement A, for i =1, ..., m, follows directly from the fact that
Statements C and D are valid for i = 1 due to Lemmes 2 and 1 respectively.

We will now prove R, 0, and D for 1 > 1 under the inductlon hypothesis

that C and D are valid for i - 1.
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To prove B let v, elo,pjbe given. On the interval « Swy 3 Sy, the

function e, , (u:i.-l) is non-decreasing and venishes at the left end, vhereas

hi (ui

venishes at the right end. Since both e i_l_a.nxl hi are continuous, there must be a

point vi_i {not necessarily unique) in [« ,vi] at which € 3 (vi_l) = hi(vi-l’vi)"

-l’vi) » considered as a function of u, , only, is nom-increasing and

" Such & point obvicusly provides the minimm value, among u, e[a ,vj_]-, of

- max {eial(ui=l)’ hy (ui-l’vi)} . This establishes statement B.

- For later use we note that the po:ii;‘t :vi—l also maximizes the value.of

min {e, , (w; )5 By <ui-l? vi)}ammg ui—l'e,[a’vi‘] This permits an alternative

definition of e, for 1 > 1:

i

(6) e () = max min {e; o (u;_5)5 byluy o0}
i

To prove C let vy £ v, be given. Using B, there exists v, , elo »¥41such

: 3 - o !
that ei(vi) = ei-lv(vi-l) = h:!. (vi-l’vi j.» Then for vy elo AARE

og(vy) = hy(vy 157y} Shylwy 35y) < Byluy 5%,
f_ max {ei"l (ui'l)’ hi(ui-l’wi)&
while for W g e[vi_l,wi ]

eglvyd = ey 3lvy ) Sey jluy () Smaxie, ) (v 1), by(uy o,w, )

Thus for all L efc ,vi]

< ) )
ey(vy) Smax {e; (u )5 By (w5, 0l

and 80 e y < ei(wi) vhich establishes C.

1{(vy

For the proof of D let v, s (@,B] ad s

¥, &
i .
Using the motonicity established in C it will suffice to prove the existerce

iy
~ e

ck

of a § > O such that, if vy # B, v:"<ui <vi + § implies e, (ui) < ei(vi) + 6



end, 1f v, #a

- -
v, 2w >V, - implies e, (ui)f_ei (v.} - ¢

By statement B there exists Vi1

ei(vi‘) = ?i-l(vi-ul) = hi(vi-l’ vi). By the continuity of h, ‘(Lenma 1), if

sla, vi] such that

s > 0 1is sufficiently small, then ‘hi(vi-l’ ui) - b, (v:l-—l’ vi-)‘ <e

For vy # P we may assume § is smaller than p- vy Then for vy < u, <+ 6

ei(ui) f_ max tei-].(vi-l)’ hi‘{vi-l, ui)j

= ) = e,(;
hi(vi-l’ u )< hi(vi-l’v;) + 6 ei(vi) +6

Similarly for v, # o, we mpy essume § <vi - @. Then we wish to consider
u, satisfying vy < w < vy - &, but two cases arise, depending on whether
<v.. per. '
Vyq ™ ¥y OF ¥ 5 < V,. In the former case we have ei(vi) = hi(v:l-l’vi) = 0

and thus, by C, ei(ui) = 0 for all u, s{a,viL Thus we certainly have
ei(ﬁi) > ei(v } - ¢

 In the latter case we may sssume O is smaller than VitV so that Vi1

1ies in [2,u,). Then using the alternstive definition (6) for e, we obtain

eg(uy) 2 min {eg 10vy 1)s By(vy 0wy M)

| A NVEGRER LR VR
'.I,‘his completes the proof of statement D and hence of Theorem 1.

4, Sufficiency of the balenced error property
In the previous section the existence of a balanced solution vector wes

estahiighed. In this section it wiil be shown that every balanced vector is a

solution vector. We conbinue to use the notation introduced in Section 2.
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Lemma 4. For eny uand vin ¥

plu) = min, hi(ui 1Yy } < maxi hi(vi-l?vﬂ = u (v)

Proof. If u = v, the lemma is trivially true. -Suppese u # v. B!hén by

Lemms 3 there is an index j such that Lu 3-17%5

w, [vjl_l,vJ]. Therefore,
pu) < h 1:13) l’v ) S # (v)
where the center inequality is due to Lemma 2.

Lemme 5. For any ue U, p(u) <7 <,u(u).

Proof. The second inequality follows direct]y frcm the definition of T. T
establish ghe first inequal‘!.ty let u* be e solution vector and apply Lemma k,
obta:lning plu) < p (u*) =T,

An immediate consequence of Lemma 5 is

Temms 6. A balanced vectcr is a solution vector.

5. Possibility of descent to & solution

Théorem 3. For any veé Uand v* e U* there is a piecewise linear path P
~ in U com mecting v to v* and having the property that 4 (u) is non-incressing as
u.moves a.loz;gP from v to v,

' Proof. A vector valued ﬁmction u will be defined which mps a2 real interval
0< t<k (forsame k < m) ontoasu‘bsetPofUinsuchawayfhatPhasthe
propexties stated in Theoren 3.

1. Set t =0. Setu (0) svi,:,so, L « o eym
2. 1£ v, (%)) ;_vi%,'i =0, . . ., m, then set k = t_ and quit,
otherwise go ﬁo étep 3. S ,
3. Let j b2 the first index such that [u‘j“l(t'c), uJ(tc)j is a
proper subset of [v%* 17 1o

We will call lu,_ NORY (t)l the key veriablc interval for the current
iteration and [wv# 1 l,v* ] the key target 1nterva3.. The effect of steps ka and 58
will be to expand the key variable interval so that it coincides with the key
target interval when t resches §.4+ 1. Steps &b and 5b provide for components in

the path of the sxpansion to be carried along rather than being bypsssed.



hoa. For t, <t <ty + 1, let u, ) (t) vary lineerly taking the value
J -1 at t + 1.
L.v. If an index i < j-1 satisfies u,(t,) ¢ [v* 1Y _1(t.)], then, since the
value uy (t) veries from the right to the left end of this interval as
t varies fromt tot + 1, theremstbeapointtiatwhj.ch

uj_l(ti) = ui(tc). Define u (t} to be constant for t, < t < b, and to be

equal to “3-1(1?)_f°r ti St<t + 1.
5.8, For t < &< ty + 1, let u,(t) vary linearly teking the velue v¥, at t, + L.
5:b,  If an index i > J sé,tis_fies u (t ) e [u (t ), v* ] then there must be a
| point t, at which uj(ti) s_'_ 4(t.). Define u (t) to be congtant for
t < t<t, and tobe eéuai'touj(t) for b, <t <t + 1.
6. - For each index i not tree.'bed. in steps b or 5, define u,(t) to be
constant for'b <t<t +l.
To Renlacet byt + 1 and return to steoa.,
Remark 1

The following graph illustrates a set of functions ui(t) defined by this
construction:

Ly () : ' : *
v ! %
w3 ()
]
o,
¢ “cy (8)
. 'yJ'
3
*
]
2, (% o *
v
22 (E) .
5 ‘ — %"
o t - : -4 2 3

In this illustretion the key interval for the first iteration, i.e.,
as t varies from O to 1, is [uO(t), u3{t}]. The succeeding key intervals
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aye [u3 (), u, (¢)] end Cu (63, a (t)]. Hote thst u, (t) coincides with
ug (£} 4n the lstber pert of the intervel 1< < 2.

Bemark 2. The existence of the index j needed in step 3 1 essured by

Iewms 3.
Remark 3, hsteps#a@%mhwtomdﬁhemwen&ualo&ud
:.snotegasltousﬁmlva:;ue(v crv respecuvem)atm bt both

d
-me@nl%otheirﬁmlvalmattu%ﬂ. Both of these two compoments -

remsin constant for & > ¢, + 1. Tus at least cne previocusly unstabilized
compenent stabilizes on each iteration and so the procedure terminates after
et most m-l iterations.

Remark b ﬁefmctim/(a)mimxéasewithimmmtomyﬂmof
the fumetions b, (“i-l’ “1) _;ncreaees es ¢ increeses. For h, (“1-1’ 'q_l)
tomereweitiameemth&tei‘merui_ldeerwewu!memﬁ
that u,_ be distinet from w. B

In the given comstzuction only he ey voriable interwml is pesmiitad
to move in this menner. Sinee'itiscoveredbyitsmethmg
the move it follows from lemms 2 ﬂzsthé (u pu)<h ( 1,-J}<~r.
Mmmtmeanmmasemﬂhe%ﬁismmm%mn Thus
. pr18 non-ineyessing os t goes from O o kK, ioe.asngoeszmﬁvtov*m
the preserfved memmer. |

e set {v (£): 0< ¢t € X} hes, theréfore, allofﬁhewoperties re-
quived of the psth P, Tds concluies the proo? of Thearem 3.

6. Comterexamples
In the light of the favorable deacent properties stated in Theorem 3

it is natugal Vo inguire whethersiis & convex fvaction on U. Example 1
below shows that this need nct be the case., The second exmmple shows
that the solution set U cen fail to be convex although Theoyem 3 does

3%
nply that ¥ 18 evewige canracded,




- Exomple 1. |

. this example shows that the Tunction : con Pail o be comvex end thet

. p4 can heve weak loeal mintwe wbich sye not globel minima. Defive £ (x) foo
X1 < T by linesr imterpolation in the following tebles

x <7 | =5| -3/ -1} 1 3] 51 7

2(x) | -3 =3 -] -1} 1 1 3 3

Consider the problem of spproximeting £ by two constant functioms,
i.e.n = 8y nianeg_-dlnd_azo. The spaeeaofpossfbl_ebreekpom
veetors consists of all vectors of the form ( -7, Wy 7) with =T < ST
The funetions b, h,, and y are then given by linear j.n_*berpolation

in th.e"—“.“j e R T e za e
u | |3 || ol |3 |57
I™tu)| o | o 2 | 1| u5|2 |2 3|3
BT 3 | 3 |2 [ 2| w51 | 100
HaleTw,?) 3 | 3 | 2 2| 15| 2 | 2 [ 3|3

The function u 48 Seen %o be momecomvex. If f ia redefined in the

. 's.zxﬁez%:al {=1,1] %o be min éz: 'f‘r!e) then the new ¥ will be non-comvex in

every meighborkood of the zolmtion vector (-7, €, T)o |
Tre fuction & bas maxy veak local ninime, for example, every point

in the open interwal between u, = ~3 and u1~3 =1l. ¥re only s&ict minimm

iz as w = 0. '

gﬂle 20 _
This exemple shows that U con 704l to be convex. Defime £ (x) for
[2] < b by linear interpolation in the Pollcwing table.
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x ) 51 2 ¥3 i,
£(x) -1 2 1 L 3

We will approximate £ by three linear polynomials, i. e.,

ma= 3, nl=n2=.n3=1, d1=d2=d3=0. One solution is

u= (-4, -2, 0, L), gl_(x) =, ge(x) = -X, g3(x) = X, 4 = 1. Another solution
is v = (-4, 0, 2, L}, gl(x) = =X, ge(x) = X, gs(x) = X, 4= 1. The mid-point
between u and v, namely (-4, -1, 1, 4), does not provide a solution however,
since the best approximetor on [-1,1] is g2(x) = .5 and this permits a

meximum error of 1.5.
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